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Quasisymplectic integrators for stochastic differential equations
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Two specialized algorithms for the numerical integration of the equations of motion of a Brownian walker
obeying detailed balance are introduced. The algorithms become symplectic in the appropriate limits and
reproduce the equilibrium distributions to some higher order in the integration time step. Comparisons with
other existing integration schemes are carried out both for static and dynamical quantities.
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[. INTRODUCTION exploited in deriving numerical schemes. Algorithms which
so use low-order symplectic schemes as basic schemes are
e ones in Refq11-13.

The approach we will follow is to derive humerical algo-
hms having in mind two requirementg;) the algorithm

Stochastic processes are well known to be at the heart qaﬂl
many physical systemfd]. Several approaches have hence
been developed to understand the dynamics which is realizerq

g:f; iipﬁglr?tz 2‘;‘33'?&2'“%2&02}%% gnﬁa?ifotnhseorp?nsczti%ie ould become symplectic in the deterministic, frictionless
9 q limit (T=y=0); and (ii) the numerical algorithm should re-

The literature on the numerical integration of stochastic ; —_— o
differential equations is huge: we will limit here to mention a produce as closely as possible the equilibrium distribution,

couple of classical citations widely used in the physics com-When itis definedi.e., forV(x) bounded from below, see the

munity [2—4]. Additional comments and references can befollowing sectior], of the system given by Ed1). The re-

found in Ref.[5]. The numerical algorithms presented in quwementT=0§e§ms requndant onge0 Is 'meSEd: hOW'.
these works are general and can be applied to basically a er[1'4,15,.1] it is possible to have Symp'.ec“? StOCh.aSt'C
flow; however, they might not be the optimal ones for casedYnamics(given the structure of Eq(1), this implies an in-

when additional information about the details of the syste Inite T], and we need 10 explicitly exclude this case. As we
under study are available. will see below, to the best of our knowledge, either the

An important class for which dedicated algorithms can bel(‘jormert.or th? latter reqluwerr]nents th(ta been ebnf?hrcefd tlk? the
derived is given by the following equations of motion: erivation of numerical schemes, but never both of them.
The algorithms introduced here will improve both the algo-

X=v, rithms of Ref.[6] and of Ref.[16].

v==w +FX) + (1), (1) || BRIEF REVIEW OF THE BENCHMARK ALGORITHMS

where &(t) is a random Gaussian noise, with zero average AND SOME DEFINITIONS

and standard deviation To assess how well each algorithm is performing, we start

(EDE®S)) = 29Tt - 9). from the knowledge that fow(x) which are bounded from
below, Eq.(1) leads to an equilibrium distributioR(x,v) for

In the following, we will also useV(x), defined asF(x) the variablesx andv of the form
=-V’'(x). Note that although we are dealing here with only
one Brownian walker, the algorithms we are going to show
can be easily extended to the case wkendv are vectors
andF;(x), the force acting on thih walker, is a function of
all other walkers. whereN is a normalization constant. We are going to com-

The above equation is commonly found in the liquid statepare the exact theoretical equilibrium distribution to the
literature (for numerical schemes appropriate in the integra-equilibrium distribution obtained from the simulations. It is
tion of the Brownian dynamics of a liquid, see among othergpossible, in principle, to check theoretically which is the
[6-13) and some algorithms have been proposed, over thequilibrium distribution which is expected integrating using
years, for its numerical integration. a given numerical scheme, following R¢18]: suppose we

To date, perhaps the most widely used algorithms for thdave a numerical scheme of the form
integration of Eq(1) are the ones derived in Rgb], where
two algorithms have been proposésee also references
therein: we will benchmark against one of them, and to this
end, we will briefly review them below. Note that the system
of Eq. (1) becomes symplectic whep— 0 and, until some then the probability distribution of; satisfies the Kramers-
recent workg14—14, this symplectic nature was not really Moyal expansion

P(x,v) =N exp(- [v¥2 +V(X)]/T}, (2)

Xi(t+h) =x(t) + hWi(x;, §)
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(1) =T(L-eM),

(mmp) = I(l -e M2,
Y

The algebra to derive the correction to the equilibrium dis-

where(:--), means averaging over the noise realizations angripution induced by the numerical scheme in the general

the K, ,, depend explicitly on the integration time stéep
and its powers. Equatio(8) is obtained 18] from the evo-
lution equation forP(x,t),

P(x;,t+h) = <f dx(t)P(x;,t) X TL;a(xi(t + h) = xi(t)

3

by Taylor expanding th& function in powers ofW.

A system in detailed balance at temperatiirelike the
one given by Eq(1), has some theoretical equilibrium dis-
tribution [for V(x) bounded from belojv A numerical

- hVV.(Xi,&))>

scheme, however, will in general generate an equilibrium

distribution which differs from the theoretical one. Following
Ref. [18], we expect that

wherePg;, is the equilibrium distribution generated in the
simulations andPy. is the theoretical equilibrium distri-
bution. Given the explicit form of the numerical scheme,
the variousK; ., can be computed: applying E(B) with
Psim on the right-hand sidérhs) asP(x;,t), and expanding
the rhs of Eq.(3) in the small parameteh, assuming
(equilibrium) that P(x;,t+h)—P(x;,t)=0, we can derive the
equations satisfied by th§ annihilating the coefficients
in anh power series. Note that the lowest ordetirs the

P(Xivt = oo)simz P(Xivoo)true ex 2 hnS1/T

n=1

“standard” Fokker-Planck equation for the system under

study. The first nonzer§ yields the correction to the true
equilibrium distribution generated by the numerical
scheme.

Let us show how to use E@3) taking one of the algo-
rithms of Ref.[6]. This algorithm integrates E¢l) using the
prescription

X(t+h) =x(t) + ciho(t) + ChF(X(D) + 74,

v(t+h) =ce(t) + c;hF(x(t)) + 75, (4)

where

Co=e M

and »; and », are two random Gaussian variables with zero
average and moments,

case and for a given high-order integration scheme can be
formidable; however, for a flow like Eq(l) and for the
scheme given by Eq(4), the algebra is manageable. We
compute first some of the lowekts, up to(W*, i.e., up to
terms such ag;,. To give a glimpse of the procedure fol-
lowed, we have, for instance,

Ky =ho(t) = Ly (t) + V' (x(t)]2 +o(h®),

Ky = N[2(71720(1) + (5] + W&~ () o (D) + V' (X(1)) ]
+(n)y [yo(t) + V' (x(t) 2} + o(h?),

and so on. Assuming thasee Eq.(2), with S=5;]

P(x,v) =N exp{- [v%2 + V(x) + hSx,v)]/T},

plugging the scheme of E¢4) into Eqg. (3), using the com-
puted expressions df’s, we have thaS(x,v) satisfies the
partial differential equation

3%S(xv) v ISXv) (F(x) v)&S(X,v) v?
- — - -= - —F'(x)
Jv Ty dx Ty T dv 2T
1
—Z/F (X)—O.

This implies that this algorithm fails to reproduce the correct
equilibrium distribution atO(h) in the exponent. It is pos-
sible, for the case wheW(x)=w?x?/2, to solve this partial
differential equation, obtaining the numerical equilibrium
distribution at lowest order ih, which is

P(x,0) =N expi- [v¥2 + w?x2/2)/T}
with

i.e., the numerical equilibrium distribution is similar to the
correct one, but with a renormalization of the temperature. In
particular, this effective temperatutdhe temperature “simu-
lated” by the algorithm goes to zero in the limity—0. In
Ref.[6] it is acknowledged that the algorithm does not work
well in this limit, although no formal proof is provided.

To overcome the problem with the case of smalin Ref.
[6] a second algorithm is proposed, which reads

X(t+h) =X(t) + ctho(t) + ch?F(X(1) + 71,
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v(t+h) =cu(t) + (cp = chF(X(1)) + ChE(X(t + h)) + 7. v(t+h) =v(t) +hF(X),
(5 A
Using Eq.(3) to evaluate the correction to the true equi- X(t+h) =%+ Ev(t +h), (6)

librium distribution generated by this algorithm, we find that

the contributiors, vanishes, and we are left with the teBn  \yherex is the position and is the velocity. This scheme
In other words, this algorithm reproduces the correct equilibxgnserves the quantitd —h3(uFF’ +v3F"/6)/4, where H
rium distribution ato(h), but there are still corr_ectior@(hz) =p2/2+V(x). It is then possible to reintroduce both the dis-
in the exponent. The algorithm given in E@) is the refer-  gjya4i0n (-4y) and the noise, writing the tentative scheme
ence algorithm which we propose to improve in the follow-

ing section. We will refer to this algorithm as “Li{from ~ h

Liquid) in the following. X=x(1) + Ev(t)’

1. ASISYMPLECTIC AL RITHM
QUASISYMPLEGTIC ALGORITHMS o(t+h) = ey (t) + hFR) + dy 7],

A symplectic algorithm is a numerical scheme which at-
tempts to preserve the two-fornas X dp; during the inte- h
gration of a Hamiltonian flow. The quantity is a general- X(t+h) =%+ Ev(t +h), (7)
ized coordinate andp; is the corresponding conjugate
momentum. A nice introduction to the symplectic integrationwhere 7 is a Gaussian variable, with standard deviation one
can be found in Refs[19,2(0. Given the Hamiltonian and average zero. We use again B, and, imposing that

H(a;,p) and the equations of motion the termO(h) in the exponenti.e., the termhS)) vanishes,
: : we find that the unknown arbitrary quantitieg c,, andd
o ={a.H}  pi={p;,H}, read vy B © !

a symplectic integrator will in practice conserve some quan- h

tity H, which in general reads c =1 —7?,

ﬁ =H+ hnG(pi!Qi)!

where h is the integration time step an@ is a function sz#y

which depends on the numerical scheme used for the inte- 1+h/2

gration. The problem of Hamiltonian flows in the presence

of fluctuations has been addressed also in REfd,15, dlz\;’ﬂ_ (8)

whereas quasisymplectic schemes were derived in [R6f.
(see also below, when various comparisons are carried outAlthough we will carry out more extensive comparisons fur-
A preliminary account of the material of this section can bether down, let us briefly compare this scheme to the scheme
found in Ref.[21]. of Eq. (5). The present scheme is by construction well be-
Given that we are interested here in the integration of Eghaved in the limit of y—0: it has the same accuracy in
(1), we start from the symplectic integration of Hamiltonians computing the equilibrium distribution as of Ep); but it
which are separable and quadratic in the velocities. There af€quires only one random deviate per integration time step
very many different possible symplectic schemes: howeveras opposed to two deviates for the scheme of(By, so it
having in mind that we are seeking a scheme which shouldill run faster. In the following, we will refer to the algo-
be used in the integration of a stochastic differential equatithm of Eq.(7) as “SLO” (symplectic low ordey.
tion, we restrict ourselves to considering a scheme in the Looking at the structure of the previous algorithm, we can

form try to derive an algorithm of higher order. In the derivation
of Eq. (7), when we applied Eq(3), given the number of
q(i) =q(i - 1) +hap(i - 1), unknown quantities we could only impose that the t€th)
in the exponent disappeared. If we could somehow increase
p(i)=p(i - 1) + hiF(q(i)), the number of unknown quantities when applying E3),

while keeping the algorithm simple, we might be able to
make the term€D(h?) in the exponent disappear. We start
combining two steps, each one of the form of Ef), done
with an integration time step/2,

for i between 1 andN, whereq(0)=q(t=0), q(N)=q(t=h),
etc., andh is the integration time step in the simulations. The
coefficientsa(i) andb(i) are chosen as to minimize, in some
sense, the quantit@(p,q).

The lowest possible symplectic algorithm one can write to h
integrate Eq(1) following this approach reads, wheyr T X1 = X(t) + Zv(t)’
=0 (this scheme is also known as “leap frog”

~ h h |
X=X(t) + Ev(t), v1=Cy| Cou(t) + EF(Xl) +VyTh(agmy + a7 |,
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Xp = Xy + =05 vi=v(t) ~hpw(t) + hFE(X(D) + V2yThy,
2 i)

Xo = X(t) + hl}l,

h —
v(t+h)=cy| cus + EF(Xz) +\yTh(by7; +by) | v, = 0(t) — hywy + hF(x)) + \"“m%

X(t+h) =X+ Dot + 1), ) x(t+h) =222 e =102
4 2 2

wherec,=(1-yh/4) andc,=1/(1+yh/4). Here,, and,  The Heun algorithm, which is a fairly widely used algorithm
are two random Gaussian variables of standard deviation orfer the integration of generic stochastic equations, does not
and average zero. The idea is now to choose the coefficientgake use of théquasjsymplectic nature of the flow: we
a's andb’s in such a way as to annihilat®, and possibly ~expect that it will not fare too well in the limit of smaly.
minimize S,. This is done using Eq9) in Eq. (3), which ~ We recall that it is knowrd5] that the equilibrium distribu-
results in a number of algebraic equationsdpandb;. The  tion generated by the Heun algorithm is accurate up(hd)
algebra, although straightforward, is cumbersome and wé the exponent. We will refer to the Heun scheme as to

will simply report here the results. For a givey, the fol-  “He.”
lowing choice for the other three parameters will ensure that We will also compare our algorithms to the quasisymplec-
S, vanishes identically: tic algorithms of Ref[16]: we should mention here that re-

ally the latter are weak integration schengés a definition
b = — a 2V14 - 128 of weak and strong integration schemes, see R§f. hence
1= 7 7 ' they are bound to give worse results than the other schemes
when, as we do, average quantities are considered. The two
2 [ A21/2 algorithms considered integrate with the prescriptidRef.
_ (7 + 282 + 24&“'14_ le) / , [16] should be consulted for more details
V42 MT1:

o =

— = = -— X(t+h) =x(t) + hv(t + h),

_ V42by(= 7V2 + 6y2a] + 248,17 - 6a)) (t+h) =x(t) +ho(t+h)

- ’/_ 2 . R

V(= 14+ 588) v(t+h) = u(t) - hV (x(t + h)) = hyo(t + h) + 2Thys,

As function ofa,, we can now write the equations satis- (11

fied by S,: we find thatS, vanishes for a particular choice of )
the parametea;. Summarizing the numerics, the seta§ ~ Wherev(t+h) andx(t+h) should be found recursively, and

2

andb’s which simultaneously makeS, andS, vanish is MT2:
a,; =—1.069 186 004 330 706 5 ... , v(t+h)=(1-y)[v(t) —hV'(x(1) + V2Thyn],
a,=-0.1533230407019893..., X(t+h) =x(t) + h{v(t) = hV' (x(1))]. (12

The random variableg take the values +1. These variables
are faster to generate than a Gaussian variable, hence these
algorithms will run faster, allowing for a smaller integration
b,=-1.036 316 412 6095790.... (100  time step to compensate for less accuracy when averaged

. ) " . uantities are considered. However, having said this, if we
Note that there is a symmetry: quantities with indexes 1 an‘i(ﬂsed Eq.(3) to assess these two algorithms, we would find

2 can be exchanged. The conclusion is that the algorithii,at they hoth have a correction to the equilibrium distribu-

given by Egs.(9) and (10) is symplectic in the limity, T tion O(h) in the exponent: these will reflect in the numerical
—0 [conserving the quantity~h*(uFF’+u°F"/6)/16], experiments, as WF()-',' will comment below.

whereas for finitey and T it reproduces the correct equilib- gy it should be noted that given the structure of the
rium distribution with an erroiO(h®) in the exponent. We Hamiltonian in the limitT—0, y—0, which is H=v?/2
will refer to this algorithm as to “SHO’(symplectic high +V(x), the equilibrium distribution for Eq(1) can also be

orden. .
. . . written as
In the following, we will use also the Heun algorithm to

carry out the various comparisons. To make this paper as P(x,v) = exp —H/T.
self-contained as possible, we recall here that the Heun algo-

rithm for a system like the one in Eql) is given by the At first sight, it may appear that the request of a symplectic
prescription: integration scheme is redundant, once we made sure that the

“correct” equilibrium distribution is generated in the numeri-
X, = X(t) + ho(t), cal integration. This is not right: the limf— O is singular,

b, =0.304 491 3128854065...,
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hence a symplectic form for the numerical scheme when ever, that even a factor 2 in the sampling time would make
=0 can(and should be imposed as an additional condition. things change little. We carry out this comparison mainly to
have an idea on how the algorithms perform, given that we
theoretically know both the equilibrium distributions and the
various moments of the systems we will consider.

We compare now the results of applying the algorithms The first system studied is given by
described previously to the integration of two prototype sto-

IV. NUMERICAL EXPERIMENTS

chastic differential equations. In all simulations, the routine XS0,

used to generate uniform random variables was the subtract N

and carry algorithn{22,23; for the Gaussian deviates, the v== = V'(X) + 29Ty,

appropriate uniform deviates were fed to a Zigqurath scheme

[24]. Let us first consider how the different algorithms repro- V(X) = x4 —x3/2. (13

duce the equilibrium properties: to this end, we integrate the

equations of motion and Compute some equi”brium mo_For this SyStem we fixed the noise intensity'ItGO.l, and
menta, which are then compared to the theoretical ones. THearried out the numerical integration for two different values
averages were computed sampling the trajectories at tim@f the damping coefficieny and for the different integration
intervals equal to the largest time scale in the systeither ~ Schemes. The results are summarized in Fidod y=1) and
1/y or 1/w): the number of sampled points is the number ofin Fig. 2 (for y=10"%). The quantity(H) is defined agH)
averages quoted in each figure caption. Other more conset(v?/2+V(x)). In all figures, the results of the digital simu-
vative time scales could be considergmich as twice the lations are shown by symbols with a gray straight line as
largest time scale the number of averages is so large, how-guide to the eye; the bold dashed line is the expegtseb-

0.88 ; . , T 0105 . . ; ,
<X+ 4 < 1< T 9 7
< L CAR
I q ] 4 =
PP a9 1 I O gu 7 P
regttengaea o i L83 BEXC00” T ]
0.87 % §%Dg§gggg 015 -ﬁ-ﬁ-@-ﬁ%ggAAAAA 1
I Hg V'V L < <4 - 4
- & sk i dagq FIG. 2. Result of simulations for dif-
I O OH | i <q ferent integration schemes, as a function
L c 1 1 1 L . . .

086 o110 OsLo b 0'_3 0.095 0'_1 0!2 h 0'_3 of thg integration time stelp, for the sys-
ol ] | Z <A> ﬂqo . — 00m . | . : ] : tem 'IS E?j.((lia). Varll?usdmo_r;entlj are
< F << MTI vl s considered(see text for details taking

T4 .M VVZD 1 s 9539' T=0.1 andy=10"2 Number of averages

i Voo ] - v is 4X 10°
0.108 -, O Fadego g o '

K EZolooas ] sl 20000 7

i ﬁ-gg_?<1<1<1 1 om SgﬁgﬂgggAAAAA N

L RN 1 - << 1

<

0.104 |- <44 L | da 4 o |

L < <

1 | 1 I 1 I 1 | 1 | 1 I
0 0.1 0.2 h 03 0'0270 0.1 0.2 h 03
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h h
retical) value for the quantity considered. For the number of v=—yw-V'(X) + \s’zyT,],

averages considered, the statistical error is much smaller than
(order of) the symbols for the larggismalle)y damping.

Let us comment on the results. It is evident that the Heun
method(He in figureg is not very appropriate for the smaller
damping consideredFig. 2). Even for the larger damping

(Fig. 1), the Heun algorithm is typically outperformed by the The results of the computer experiments are summarized

SLO schemgEq. (7)]; note that the SLO is fairly faster than in Figs. 3 and 4. The comments parallel the comments we

H(_e,_g|_ven that it requires only_ one evaluation of the deter-already made for the system of EQ3). He is the least
ministic force for each integration time step.

The algorithms MT1 and MT2, as expected, do not workaceurate scheme for small damping, although t2he error on the
moments is quadratic om [a signature of ai©(h) error in

well for the larger damping considered, and become mor o o
accurate as theg dampian)] ig reduced: it should be noted thﬁle equilibrium distributioh MT1 and MT2 perform better
X 2 smaller damping, with an error on the moments which is

for this case, MT2 seems to be more accurate than MT1 foro hiv linear in the intearation time step. SLO does better
a given integration time step: considering that MT2 is much ughly o ' integration t P-

faster than MT1, the conclusion seems to be that MT2 oughtthan both He and MT1, MT2, and for both damping consid-

to be preferred, between these two schemes. Note also thﬁad’ being as fasif not fastey than both schemes. When

V(x) = x44 +X3/2, (14)

the only difference with the system of E(L3) being that
now the potential is monostable.

5. . .
the error on the moments for these two schemes seems ¢~ 'S considered, Li appears to perform worse than even

grow linearly with the integration time stem which is re- 0. Slt-|0boutperforms Ll:tontIK Whgmés Eorsader_ed, L|| b
lated to theO(h) error in the exponent which was mentioned seems to be more accurate ?n 5 ut-again only by
. X X virtue of a cancellation betwegw“) and{v*).
in the preceding section. We t ¢ ical . s t

The Li algorithm is less accurate than SHO when xhe eh urn now ? so_n;e num?rlca e;:per:;nen S OI assess
moments are considered for both values of the damping irti'c.)wt € varloq; agdorl_}_hms per orlm when ynamlclf quan-
the wholeh region. The SHO is the algorithm which gives tities are considered. These simulations are somehow more

the most accurate results for tkémoment. and results com- mPortant: similar calculations, for instance, would be car-
parable to or better than the one obtained with Li for tRe ried out in multistable systems to compute escape rates, for
example. In most cases these quantities are not known theo-

andv* moments. It is only whegH) is considered, and for . 2 )
. . retically, and stochastic simulations are one of the tools to
the larger damping, that Li seems to be more accurate than

. i . . “determine them. Using the system of Efj3), we computed
SHO. However, care is necessary in drawing concluslon'tane mean first passage tim@dFPTS to go from one of the
from (H): looking for instance at Fig. 1, we note that Li P 9 9

q timates both? and x2 ling the struct £ th minima to the other on@&he minima are located ai=+1):
underestimates 20 a}‘n X - recatiing the Structure ot e e results of the simulations are summarized in Figs. 5 and
potentialV(x) =—x“/2+x%/, it is clear that these two underes-

. | leadi | h 6, after averaging a suitable number of passage times be-
timates tend to cancel out, leading to ¢) closer to the  yyeen the minima. In the captions we quote a lower bound

theoretical one, but only by virtue of a coincidental cancel-gy the number of averages taken: each point was actually
lation. o . ~ computed using a slightly different number of averages.
The second system studied is similar to the first one:  Gjyen the fairly large value of the noise intensi=0.1),
there is no theory available to compute an “exact” MFPT for
X=v, comparison with the simulated MFPTs. To have some refer-
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ence, we took as reference value the average of the MFPWhich grows only quadratically ih, clearly He is the algo-
obtained via the algorithms Li and SHO for the three small-rithm which performs worse. MT1 and MT2 now give more
esth values used in the simulations, and drew the dashed lineeasonable results, and they yield MFPTs comparable to the
at this value. For the larger damping conside(E@). 5, vy  ones obtained using SLO. SHO outperforms Li, giving MF-
=1), He and SLO perform in a similar way. MT1 and MT2 PTs closer to the exact ones over the wholenge consid-
give unreasonable values for the MFRAnly one point for  ered. Li on the other hand seems to give results which are
MT1 is actually on the graph, for the smalléstonsidered: roughly equivalent to the ones obtained using MT1, MT2, or
all other points for both algorithms are outside the MFPTSLO. For these simulations, the statistical error due to the
range considergd Li and SHO perform in a similar way, sample finiteness is of the size of the symbols used.
giving results closer to the correct MFPT throughout the We would like to note that the numerical experiments
range considered, with a slightly better agreement shown bwere done stretching the algorithms into parameter regions
SHO for largerh’s. The statistical error associated with the which are somehow extreme: the typical time scale for the
finiteness of the sample used is much smaller than the synpotential considered is around Jthe oscillation frequency
bols size. around the minima for Eq(13)] or around 1[the largery

The situation is more interesting when a smaller dampingonsidered, and the oscillation frequency for the potential of
is considered(Fig. 6, y=10"2). While showing an error Eq.(14)], and yet an algorithm like SHO is able to integrate
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FIG. 5. Result of simulations for different integration schemes,
as a function of the integration time stép for the system in Eq. FIG. 6. Result of simulations for different integration schemes,
(13). The mean first passage time between the minima is considereas a function of the integration time stép for the system in Eq.
(see text for details taking T=0.1 andy=1. The results for MT2  (13). The mean first passage time between the minima is considered
fall outside the figure bounds, and only one point for MT1 is within (see text for details taking T=0.1 andy=10"2 The number of
the bounds. Number of averages used to compute each point in tteverages used to compute each point in the figure is in excess of
figure is in excess of ¥ 10%. 7X10°,
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up to integration time stegsorder of 0.3, with corrections to of the figures, simply stretching the Li data by a factor 2
the moments or to the MFPT's which are smaller than, or atlong thex axis. Even in this case, when the deterministic
worse order of, 1 %: in our opinion, these are remarkabldorce dictates the speed of the simulations, for small damp-
results, particularly when the flatness of the MFPT computedngs SHO outperforms Li in the MFPT calculations.
with SHO in Fig. 6 is considered.

We shpuld ad(_JI tha_t comparing algorithms having in mind V. CONCLUSIONS
only the integration time step is only part of the story: for
instance, when comparing SHO and Li we should recall that We introduced two algorithms for the numerical integra-
they both require two Gaussian deviates per integration timéon of the equations of motion of a Brownian walker. The
step, but ondgtwo) evaluation of the deterministic force for features of these algorithms are that they become symplectic
Li (SHO), respectively. In all casgdike herg when the sto- when the damping and the temperature of the Brownian
chastic component is computationally heavier than the detewalker are taken to be zero, and give the correct equilibrium
ministic component, a comparison like what we did is appro-distribution to some higher order in the integration time steps
priate (the algorithms take the same time to yu®n the for a finite damping and temperature. This, in turn, leads to
other hand, when the deterministic force is the slow part oimore accuracy when dynamical quantities are considered
the simulationglike in the presence of many interacting par- (such as MFPY than leading existing integration schemes.
ticles and/or complicated forcgsLi will run faster than  Possible applications of these algorithms are in the integra-
SHO: at best, Li will be twice as fast as SHO. In this casetion of the dynamics in the liquid state, where the speed up
we should compare the algorithms in a situation when theyrovided by algorithms which are stable for fairly large time
take the same time to run: this is easily done via inspectiosteps may help in improving current simulations.
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