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Two specialized algorithms for the numerical integration of the equations of motion of a Brownian walker
obeying detailed balance are introduced. The algorithms become symplectic in the appropriate limits and
reproduce the equilibrium distributions to some higher order in the integration time step. Comparisons with
other existing integration schemes are carried out both for static and dynamical quantities.
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I. INTRODUCTION

Stochastic processes are well known to be at the heart of
many physical systems[1]. Several approaches have hence
been developed to understand the dynamics which is realized
given specific models: among others, one of the most used
ones is Monte Carlo integration of the equations of motion.

The literature on the numerical integration of stochastic
differential equations is huge: we will limit here to mention a
couple of classical citations widely used in the physics com-
munity [2–4]. Additional comments and references can be
found in Ref. [5]. The numerical algorithms presented in
these works are general and can be applied to basically any
flow; however, they might not be the optimal ones for cases
when additional information about the details of the system
under study are available.

An important class for which dedicated algorithms can be
derived is given by the following equations of motion:

ẋ = v,

v̇ = − gv + Fsxd + jstd, s1d

where jstd is a random Gaussian noise, with zero average
and standard deviation

kjstdjssdl = 2gTdst − sd.

In the following, we will also useVsxd, defined asFsxd
;−V8sxd. Note that although we are dealing here with only
one Brownian walker, the algorithms we are going to show
can be easily extended to the case whenx andv are vectors
andFisxd, the force acting on theith walker, is a function of
all other walkers.

The above equation is commonly found in the liquid state
literature(for numerical schemes appropriate in the integra-
tion of the Brownian dynamics of a liquid, see among others
[6–13]) and some algorithms have been proposed, over the
years, for its numerical integration.

To date, perhaps the most widely used algorithms for the
integration of Eq.(1) are the ones derived in Ref.[6], where
two algorithms have been proposed(see also references
therein): we will benchmark against one of them, and to this
end, we will briefly review them below. Note that the system
of Eq. (1) becomes symplectic wheng→0 and, until some
recent works[14–16], this symplectic nature was not really

exploited in deriving numerical schemes. Algorithms which
also use low-order symplectic schemes as basic schemes are
the ones in Refs.[11–13].

The approach we will follow is to derive numerical algo-
rithms having in mind two requirements:(i) the algorithm
should become symplectic in the deterministic, frictionless
limit sT=g=0d; and (ii ) the numerical algorithm should re-
produce as closely as possible the equilibrium distribution,
when it is defined[i.e., forVsxd bounded from below, see the
following section], of the system given by Eq.(1). The re-
quirementT=0 seems redundant onceg=0 is imposed: how-
ever [14,15,17] it is possible to have symplectic stochastic
dynamics[given the structure of Eq.(1), this implies an in-
finite T], and we need to explicitly exclude this case. As we
will see below, to the best of our knowledge, either the
former or the latter requirements have been enforced in the
derivation of numerical schemes, but never both of them.
The algorithms introduced here will improve both the algo-
rithms of Ref.[6] and of Ref.[16].

II. BRIEF REVIEW OF THE BENCHMARK ALGORITHMS
AND SOME DEFINITIONS

To assess how well each algorithm is performing, we start
from the knowledge that forVsxd which are bounded from
below, Eq.(1) leads to an equilibrium distributionPsx,vd for
the variablesx andv of the form

Psx,vd = N exph− fv2/2 + Vsxdg/Tj, s2d

whereN is a normalization constant. We are going to com-
pare the exact theoretical equilibrium distribution to the
equilibrium distribution obtained from the simulations. It is
possible, in principle, to check theoretically which is the
equilibrium distribution which is expected integrating using
a given numerical scheme, following Ref.f18g: suppose we
have a numerical scheme of the form

xist + hd = xistd + hWisxi,jd

then the probability distribution ofxi satisfies the Kramers-
Moyal expansion
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Psxi,t + hd − Psxi,td = o
n=1

`

o
xi

]

] xi
¯
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] xn
K1,. . .,nPsxi,td

s3d

with

K1. . .n ; s− 1dn 1

n!
kWx1

¯ Wxn
lj,

wherek¯lj means averaging over the noise realizations and
the K1,. . .,n depend explicitly on the integration time steph
and its powers. Equations3d is obtainedf18g from the evo-
lution equation forPsx,td,

Psxi,t + hd =KE dxistdPsxi,td 3 Pid„xist + hd − xistd

− hWisxi,jd…L
j

,

by Taylor expanding thed function in powers ofW.
A system in detailed balance at temperatureT, like the

one given by Eq.(1), has some theoretical equilibrium dis-
tribution [for Vsxd bounded from below]. A numerical
scheme, however, will in general generate an equilibrium
distribution which differs from the theoretical one. Following
Ref. [18], we expect that

Psxi,t = `dsim= Psxi,`dtrue expSo
n=1

`

hnSn/TD ,

wherePsim is the equilibrium distribution generated in the
simulations andPtrue is the theoretical equilibrium distri-
bution. Given the explicit form of the numerical scheme,
the variousK1,. . .,n can be computed: applying Eq.s3d with
Psim on the right-hand sidesrhsd as Psxi ,td, and expanding
the rhs of Eq.s3d in the small parameterh, assuming
sequilibriumd that Psxi ,t+hd−Psxi ,td=0, we can derive the
equations satisfied by theSi annihilating the coefficients
in an h power series. Note that the lowest order inh is the
“standard” Fokker-Planck equation for the system under
study. The first nonzeroSi yields the correction to the true
equilibrium distribution generated by the numerical
scheme.

Let us show how to use Eq.(3) taking one of the algo-
rithms of Ref.[6]. This algorithm integrates Eq.(1) using the
prescription

xst + hd = xstd + c1hvstd + c2h
2F„xstd… + h1,

vst + hd = c0vstd + c1hF„xstd… + h2, s4d

where

c0 = e−gh, c1 =
1 − c0

gh
, c2 =

1 − c1

gh
,

andh1 andh2 are two random Gaussian variables with zero
average and moments,

kh1
2l =

Th

g
S2 −

3 − 4e−gh + e−2gh

gh
D ,

kh2
2l = Ts1 − e−2ghd,

kh1h2l =
T

g
s1 − e−ghd2.

The algebra to derive the correction to the equilibrium dis-
tribution induced by the numerical scheme in the general
case and for a given high-order integration scheme can be
formidable; however, for a flow like Eq.s1d and for the
scheme given by Eq.s4d, the algebra is manageable. We
compute first some of the lowestK’s, up to kW4l, i.e., up to
terms such asKijkl . To give a glimpse of the procedure fol-
lowed, we have, for instance,

Kx = hvstd − h2fgvstd + V8„xstd…g2 + osh3d,

Kxxv = hf2kh1h2lvstd + kh1
2lg + h2h− kh1h2lfgvstd + V8„xstd…g

+ kh1
2lg fgvstd + V8„xstd…g/2j + osh3d,

and so on. Assuming thatfsee Eq.s2d, with S;S1g

Psx,vd = N exph− fv2/2 + Vsxd + hSsx,vdg/Tj,

plugging the scheme of Eq.s4d into Eq. s3d, using the com-
puted expressions ofK’s, we have thatSsx,vd satisfies the
partial differential equation

] 2Ssx,vd
] v2 −

v
Tg

] Ssx,vd
] x

− SFsxd
Tg

−
v
T
D ] Ssx,vd

] v
−

v2

2gT
F8sxd

−
1

2g
F8sxd = 0.

This implies that this algorithm fails to reproduce the correct
equilibrium distribution atOshd in the exponent. It is pos-
sible, for the case whenVsxd=v2x2/2, to solve this partial
differential equation, obtaining the numerical equilibrium
distribution at lowest order inh, which is

Psx,vd = N exph− fv2/2 + v2x2/2g/T̂j

with

T̂ =
T

1 +
v2h

2g

,

i.e., the numerical equilibrium distribution is similar to the
correct one, but with a renormalization of the temperature. In
particular, this effective temperaturesthe temperature “simu-
lated” by the algorithmd goes to zero in the limitg→0. In
Ref. f6g it is acknowledged that the algorithm does not work
well in this limit, although no formal proof is provided.

To overcome the problem with the case of smallg, in Ref.
[6] a second algorithm is proposed, which reads

xst + hd = xstd + c1hvstd + c2h
2F„xstd… + h1,
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vst + hd = c0vstd + sc1 − c2dhF„xstd… + c2hF„xst + hd… + h2.

s5d

Using Eq.(3) to evaluate the correction to the true equi-
librium distribution generated by this algorithm, we find that
the contributionS1 vanishes, and we are left with the termS2.
In other words, this algorithm reproduces the correct equilib-
rium distribution atOshd, but there are still correctionsOsh2d
in the exponent. The algorithm given in Eq.(5) is the refer-
ence algorithm which we propose to improve in the follow-
ing section. We will refer to this algorithm as “Li”(from
Liquid) in the following.

III. QUASISYMPLECTIC ALGORITHMS

A symplectic algorithm is a numerical scheme which at-
tempts to preserve the two-formsdqi 3dpi during the inte-
gration of a Hamiltonian flow. The quantityqi is a general-
ized coordinate andpi is the corresponding conjugate
momentum. A nice introduction to the symplectic integration
can be found in Refs.[19,20]. Given the Hamiltonian
Hsqi ,pid and the equations of motion

q̇i = hqi,Hj, ṗi = hpi,Hj,

a symplectic integrator will in practice conserve some quan-

tity Ĥ, which in general reads

Ĥ = H + hnGspi,qid,

where h is the integration time step andG is a function
which depends on the numerical scheme used for the inte-
gration. The problem of Hamiltonian flows in the presence
of fluctuations has been addressed also in Refs.f14,15g,
whereas quasisymplectic schemes were derived in Ref.f16g
ssee also below, when various comparisons are carried outd.
A preliminary account of the material of this section can be
found in Ref.f21g.

Given that we are interested here in the integration of Eq.
(1), we start from the symplectic integration of Hamiltonians
which are separable and quadratic in the velocities. There are
very many different possible symplectic schemes: however,
having in mind that we are seeking a scheme which should
be used in the integration of a stochastic differential equa-
tion, we restrict ourselves to considering a scheme in the
form

qsid = qsi − 1d + haipsi − 1d,

psid = psi − 1d + hbiF„qsid…,

for i between 1 andN, whereqs0d=qst=0d, qsNd=qst=hd,
etc., andh is the integration time step in the simulations. The
coefficientsasid andbsid are chosen as to minimize, in some
sense, the quantityGsp,qd.

The lowest possible symplectic algorithm one can write to
integrate Eq.(1) following this approach reads, wheng=T
=0 (this scheme is also known as “leap frog”),

x̃ = xstd +
h

2
vstd,

vst + hd = vstd + hFsx̃d,

xst + hd = x̃ +
h

2
vst + hd, s6d

wherex is the position andv is the velocity. This scheme
conserves the quantityH−h3svFF8+v3F9 /6d /4, where H
;v2/2+Vsxd. It is then possible to reintroduce both the dis-
sipations−gvd and the noise, writing the tentative scheme

x̃ = xstd +
h

2
vstd,

vst + hd = c2fc1vstd + hFsx̃d + d1hg,

xst + hd = x̃ +
h

2
vst + hd, s7d

whereh is a Gaussian variable, with standard deviation one
and average zero. We use again Eq.(3), and, imposing that
the termOshd in the exponent(i.e., the termhS1) vanishes,
we find that the unknown arbitrary quantitiesc1, c2, andd1
read

c1 = 1 −
gh

2
,

c2 =
1

1 + gh/2
,

d1 = Î2Tgh. s8d

Although we will carry out more extensive comparisons fur-
ther down, let us briefly compare this scheme to the scheme
of Eq. (5). The present scheme is by construction well be-
haved in the limit ofg→0: it has the same accuracy in
computing the equilibrium distribution as of Eq.(5); but it
requires only one random deviate per integration time step
[as opposed to two deviates for the scheme of Eq.(5)], so it
will run faster. In the following, we will refer to the algo-
rithm of Eq. (7) as “SLO” (symplectic low order).

Looking at the structure of the previous algorithm, we can
try to derive an algorithm of higher order. In the derivation
of Eq. (7), when we applied Eq.(3), given the number of
unknown quantities we could only impose that the termOshd
in the exponent disappeared. If we could somehow increase
the number of unknown quantities when applying Eq.(3),
while keeping the algorithm simple, we might be able to
make the termsOsh2d in the exponent disappear. We start
combining two steps, each one of the form of Eq.(7), done
with an integration time steph/2,

x1 = xstd +
h

4
vstd,

v1 = c2Fc1vstd +
h

2
Fsx1d + ÎgThsa1h1 + a2h2dG ,
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x2 = x1 +
h

2
v1,

vst + hd = c2Fc1v1 +
h

2
Fsx2d + ÎgThsb1h1 + b2h2dG ,

xst + hd = x2 +
h

4
vst + hd, s9d

wherec1=s1−gh/4d andc2=1/s1+gh/4d. Here,h1 andh2

are two random Gaussian variables of standard deviation one
and average zero. The idea is now to choose the coefficients
a’s and b’s in such a way as to annihilateS1, and possibly
minimize S2. This is done using Eq.(9) in Eq. (3), which
results in a number of algebraic equations forai andbi. The
algebra, although straightforward, is cumbersome and we
will simply report here the results. For a givena1, the fol-
lowing choice for the other three parameters will ensure that
S1 vanishes identically:

b1 = −
a1

7
+

2Î14 − 12a1
2

7
,

b2 = −
s7 + 282a1

2 + 24a1
Î14 − 16a1

2d1/2

Î42
,

a2 =
Î42b2s− 7Î2 + 6Î2a1

2 + 24a1
Î7 − 6a1

2d
Î3s− 14 + 588a1

2d
.

As function ofa2, we can now write the equations satis-
fied byS2: we find thatS2 vanishes for a particular choice of
the parametera1. Summarizing the numerics, the set ofa’s
andb’s which simultaneously makesS1 andS2 vanish is

a1 = − 1.069 186 004 330 706 5 . . . ,

a2 = − 0.153 323 040 701 989 3 . . . ,

b1 = 0.304 491 312 885 406 5 . . . ,

b2 = − 1.036 316 412 609 579 0 . . . . s10d

Note that there is a symmetry: quantities with indexes 1 and
2 can be exchanged. The conclusion is that the algorithm
given by Eqs.(9) and (10) is symplectic in the limitg ,T
→0 [conserving the quantityH−h3svFF8+v3F9 /6d /16],
whereas for finiteg andT it reproduces the correct equilib-
rium distribution with an errorOsh3d in the exponent. We
will refer to this algorithm as to “SHO”(symplectic high
order).

In the following, we will use also the Heun algorithm to
carry out the various comparisons. To make this paper as
self-contained as possible, we recall here that the Heun algo-
rithm for a system like the one in Eq.(1) is given by the
prescription:

x1 = xstd + hvstd,

v1 = vstd − hgvstd + hF„xstd… + Î2gThh,

x2 = xstd + hv1,

v2 = vstd − hgv1 + hFsx1d + Î2gThh,

xst + hd =
x1 + x2

2
, vst + hd =

v1 + v2

2
.

The Heun algorithm, which is a fairly widely used algorithm
for the integration of generic stochastic equations, does not
make use of thesquasidsymplectic nature of the flow: we
expect that it will not fare too well in the limit of smallg.
We recall that it is knownf5g that the equilibrium distribu-
tion generated by the Heun algorithm is accurate up toosh2d
in the exponent. We will refer to the Heun scheme as to
“He.”

We will also compare our algorithms to the quasisymplec-
tic algorithms of Ref.[16]: we should mention here that re-
ally the latter are weak integration schemes(for a definition
of weak and strong integration schemes, see Ref.[2]), hence
they are bound to give worse results than the other schemes
when, as we do, average quantities are considered. The two
algorithms considered integrate with the prescriptions(Ref.
[16] should be consulted for more details):

MT1:

xst + hd = xstd + hvst + hd,

vst + hd = vstd − hV8„xst + hd… − hgvst + hd + Î2Thgh,

s11d

wherevst+hd andxst+hd should be found recursively, and
MT2:

vst + hd = s1 − ghdfvstd − hV8„xstd… + Î2Thghg,

xst + hd = xstd + hfvstd − hV8„xstd…g. s12d

The random variablesh take the values ±1. These variables
are faster to generate than a Gaussian variable, hence these
algorithms will run faster, allowing for a smaller integration
time step to compensate for less accuracy when averaged
quantities are considered. However, having said this, if we
used Eq.(3) to assess these two algorithms, we would find
that they both have a correction to the equilibrium distribu-
tion Oshd in the exponent: these will reflect in the numerical
experiments, as we will comment below.

Finally, it should be noted that given the structure of the
Hamiltonian in the limit T→0, g→0, which is H=v2/2
+Vsxd, the equilibrium distribution for Eq.(1) can also be
written as

Psx,vd ~ exp −H/T.

At first sight, it may appear that the request of a symplectic
integration scheme is redundant, once we made sure that the
“correct” equilibrium distribution is generated in the numeri-
cal integration. This is not right: the limitT→0 is singular,
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hence a symplectic form for the numerical scheme whenT
=0 cansand shouldd be imposed as an additional condition.

IV. NUMERICAL EXPERIMENTS

We compare now the results of applying the algorithms
described previously to the integration of two prototype sto-
chastic differential equations. In all simulations, the routine
used to generate uniform random variables was the subtract
and carry algorithm[22,23]; for the Gaussian deviates, the
appropriate uniform deviates were fed to a Ziqqurath scheme
[24]. Let us first consider how the different algorithms repro-
duce the equilibrium properties: to this end, we integrate the
equations of motion and compute some equilibrium mo-
menta, which are then compared to the theoretical ones. The
averages were computed sampling the trajectories at time
intervals equal to the largest time scale in the system(either
1/g or 1/v): the number of sampled points is the number of
averages quoted in each figure caption. Other more conser-
vative time scales could be considered(such as twice the
largest time scale): the number of averages is so large, how-

ever, that even a factor 2 in the sampling time would make
things change little. We carry out this comparison mainly to
have an idea on how the algorithms perform, given that we
theoretically know both the equilibrium distributions and the
various moments of the systems we will consider.

The first system studied is given by

ẋ = v,

v̇ = − gv − V8sxd + Î2gTh,

Vsxd = x4/4 − x2/2. s13d

For this system we fixed the noise intensity toT=0.1, and
carried out the numerical integration for two different values
of the damping coefficientg and for the different integration
schemes. The results are summarized in Fig. 1(for g=1) and
in Fig. 2 (for g=10−2). The quantitykHl is defined askHl
;kv2/2+Vsxdl. In all figures, the results of the digital simu-
lations are shown by symbols with a gray straight line as
guide to the eye; the bold dashed line is the expected(theo-

FIG. 1. Result of simulations for dif-
ferent integration schemes, as a function
of the integration time steph, for the sys-
tem in Eq. (13). Various moments are
considered(see text for details), taking
T=0.1 andg=1. Number of averages is
43107.

FIG. 2. Result of simulations for dif-
ferent integration schemes, as a function
of the integration time steph, for the sys-
tem in Eq. (13). Various moments are
considered(see text for details), taking
T=0.1 andg=10−2. Number of averages
is 43105.
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retical) value for the quantity considered. For the number of
averages considered, the statistical error is much smaller than
(order of) the symbols for the larger(smaller) damping.

Let us comment on the results. It is evident that the Heun
method(He in figures) is not very appropriate for the smaller
damping considered(Fig. 2). Even for the larger damping
(Fig. 1), the Heun algorithm is typically outperformed by the
SLO scheme[Eq. (7)]; note that the SLO is fairly faster than
He, given that it requires only one evaluation of the deter-
ministic force for each integration time step.

The algorithms MT1 and MT2, as expected, do not work
well for the larger damping considered, and become more
accurate as the damping is reduced: it should be noted that
for this case, MT2 seems to be more accurate than MT1 for
a given integration time step: considering that MT2 is much
faster than MT1, the conclusion seems to be that MT2 ought
to be preferred, between these two schemes. Note also that
the error on the moments for these two schemes seems to
grow linearly with the integration time steph, which is re-
lated to theOshd error in the exponent which was mentioned
in the preceding section.

The Li algorithm is less accurate than SHO when thex2

moments are considered for both values of the damping in
the wholeh region. The SHO is the algorithm which gives
the most accurate results for thex2 moment, and results com-
parable to or better than the one obtained with Li for thev2

andv4 moments. It is only whenkHl is considered, and for
the larger damping, that Li seems to be more accurate than
SHO. However, care is necessary in drawing conclusions
from kHl: looking for instance at Fig. 1, we note that Li
underestimates bothv2 andx2: recalling the structure of the
potentialVsxd=−x2/2+x4/, it is clear that these two underes-
timates tend to cancel out, leading to ankHl closer to the
theoretical one, but only by virtue of a coincidental cancel-
lation.

The second system studied is similar to the first one:

ẋ = v,

v̇ = − gv − V8sxd + Î2gTh,

Vsxd = x4/4 + x2/2, s14d

the only difference with the system of Eq.(13) being that
now the potential is monostable.

The results of the computer experiments are summarized
in Figs. 3 and 4. The comments parallel the comments we
already made for the system of Eq.(13). He is the least
accurate scheme for small damping, although the error on the
moments is quadratic onh [a signature of anOsh2d error in
the equilibrium distribution]. MT1 and MT2 perform better
at smaller damping, with an error on the moments which is
roughly linear in the integration time step. SLO does better
than both He and MT1, MT2, and for both damping consid-
ered, being as fast(if not faster) than both schemes. When
the x2 is considered, Li appears to perform worse than even
SLO. SHO outperforms Li: only whenH is considered, Li
seems to be more accurate than SHO, but again only by
virtue of a cancellation betweenkx2l and kv2l.

We turn now to some numerical experiments to assess
how the various algorithms perform when dynamical quan-
tities are considered. These simulations are somehow more
important: similar calculations, for instance, would be car-
ried out in multistable systems to compute escape rates, for
example. In most cases these quantities are not known theo-
retically, and stochastic simulations are one of the tools to
determine them. Using the system of Eq.(13), we computed
the mean first passage times(MFPTs) to go from one of the
minima to the other one(the minima are located atx= ±1):
the results of the simulations are summarized in Figs. 5 and
6, after averaging a suitable number of passage times be-
tween the minima. In the captions we quote a lower bound
on the number of averages taken: each point was actually
computed using a slightly different number of averages.
Given the fairly large value of the noise intensitysT=0.1d,
there is no theory available to compute an “exact” MFPT for
comparison with the simulated MFPTs. To have some refer-

FIG. 3. Result of simulations for dif-
ferent integration schemes, as a function
of the integration time steph, for the sys-
tem in Eq. (14). Various moments are
considered(see text for details), taking
T=0.1 andg=1. Note that the results ob-
tained for MT1 and MT2 are outside the
figure bounds, in some cases. Number of
averages is 43107.
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ence, we took as reference value the average of the MFPT
obtained via the algorithms Li and SHO for the three small-
esth values used in the simulations, and drew the dashed line
at this value. For the larger damping considered(Fig. 5, g
=1), He and SLO perform in a similar way. MT1 and MT2
give unreasonable values for the MFPT(only one point for
MT1 is actually on the graph, for the smallesth considered:
all other points for both algorithms are outside the MFPT
range considered). Li and SHO perform in a similar way,
giving results closer to the correct MFPT throughout theh
range considered, with a slightly better agreement shown by
SHO for largerh’s. The statistical error associated with the
finiteness of the sample used is much smaller than the sym-
bols size.

The situation is more interesting when a smaller damping
is considered(Fig. 6, g=10−2). While showing an error

which grows only quadratically inh, clearly He is the algo-
rithm which performs worse. MT1 and MT2 now give more
reasonable results, and they yield MFPTs comparable to the
ones obtained using SLO. SHO outperforms Li, giving MF-
PTs closer to the exact ones over the wholeh range consid-
ered. Li on the other hand seems to give results which are
roughly equivalent to the ones obtained using MT1, MT2, or
SLO. For these simulations, the statistical error due to the
sample finiteness is of the size of the symbols used.

We would like to note that the numerical experiments
were done stretching the algorithms into parameter regions
which are somehow extreme: the typical time scale for the
potential considered is around 0.5[the oscillation frequency
around the minima for Eq.(13)] or around 1[the largerg
considered, and the oscillation frequency for the potential of
Eq. (14)], and yet an algorithm like SHO is able to integrate

FIG. 4. Result of simulations for dif-
ferent integration schemes, as a function
of the integration time steph, for the sys-
tem in Eq. (14). Various moments are
considered(see text for details), taking
T=0.1 andg=10−2. Number of averages
is 43105.

FIG. 5. Result of simulations for different integration schemes,
as a function of the integration time steph, for the system in Eq.
(13). The mean first passage time between the minima is considered
(see text for details), taking T=0.1 andg=1. The results for MT2
fall outside the figure bounds, and only one point for MT1 is within
the bounds. Number of averages used to compute each point in the
figure is in excess of 73104.

FIG. 6. Result of simulations for different integration schemes,
as a function of the integration time steph, for the system in Eq.
(13). The mean first passage time between the minima is considered
(see text for details), taking T=0.1 andg=10−2. The number of
averages used to compute each point in the figure is in excess of
73103.
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up to integration time stepsh order of 0.3, with corrections to
the moments or to the MFPT’s which are smaller than, or at
worse order of, 1 %: in our opinion, these are remarkable
results, particularly when the flatness of the MFPT computed
with SHO in Fig. 6 is considered.

We should add that comparing algorithms having in mind
only the integration time step is only part of the story: for
instance, when comparing SHO and Li we should recall that
they both require two Gaussian deviates per integration time
step, but one(two) evaluation of the deterministic force for
Li (SHO), respectively. In all cases(like here) when the sto-
chastic component is computationally heavier than the deter-
ministic component, a comparison like what we did is appro-
priate (the algorithms take the same time to run). On the
other hand, when the deterministic force is the slow part of
the simulations(like in the presence of many interacting par-
ticles and/or complicated forces), Li will run faster than
SHO: at best, Li will be twice as fast as SHO. In this case,
we should compare the algorithms in a situation when they
take the same time to run: this is easily done via inspection

of the figures, simply stretching the Li data by a factor 2
along thex axis. Even in this case, when the deterministic
force dictates the speed of the simulations, for small damp-
ings SHO outperforms Li in the MFPT calculations.

V. CONCLUSIONS

We introduced two algorithms for the numerical integra-
tion of the equations of motion of a Brownian walker. The
features of these algorithms are that they become symplectic
when the damping and the temperature of the Brownian
walker are taken to be zero, and give the correct equilibrium
distribution to some higher order in the integration time steps
for a finite damping and temperature. This, in turn, leads to
more accuracy when dynamical quantities are considered
(such as MFPT) than leading existing integration schemes.
Possible applications of these algorithms are in the integra-
tion of the dynamics in the liquid state, where the speed up
provided by algorithms which are stable for fairly large time
steps may help in improving current simulations.
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